

MMGR/086/2024 12th July, 2024

The Director-General, Zambia Environmental Management Agency, Corner Church and Suez Road, P O Box 35131, LUSAKA.

Attention: The Manager- Northern Region

Dear Sir/Madam,

RE: BI-ANNUAL STATUTORY REPORT FOR KMRL KONKOLA MINE

In fulfilment of the requirements under The Environmental Management Act 2011, Environmental Management (Licensing) Regulation 112 of 2013 which requires submission of bi-annual reports to the Zambia Environmental Management Agency Inspectorate, please find enclosed a copy of the statutory report covering the licences listed below for the period January to June 2024:

1. Pesticides and Toxic Substances Licence - NDL/PTS/00667/Z10/2014/3

- Storage of Pesticides and Toxic Substances Concentrator, Analytical Services & Public Health
- Importation of Pesticides and Toxic Substances Concentrator
- Fumigation of Pesticides and Toxic Substances Public Health
- Blending of Pesticides and Toxic Substances Public Health

2. Emission Licence - NDL/EMM/00667/Z10/2014/3

- Discharge of Effluent Combined Discharge Point No. 209
- Discharge of Effluent Lubengele Tailings Dam Overflow Discharge Point No. 208
- Discharge of Effluent Engineering Workshops Discharge Point No. 225
- Emission of Air Pollutants at Incinerator Mine Hospital
- Emission of Air Pollutants at Diesel Generator Set No. 1, 2 and 3 Power Plant

3. Hazardous Waste Licence - NDL/LHWM/00667/Z10/2014/3

- Generation of Used Oil, Fluorescent Tubes and Batteries Engineering Services, Shaft 1 & 3
- Storage of Used Oil, Fluorescent Tubes and Batteries Engineering Services, Shaft 1 and 3
- Generation and Storage of Healthcare Waste Health Centre No. 1, 4, 5 and Mine Hospital
- Transportation of Healthcare Waste
- Generation, Transportation and Handling of Expired Chemicals

4. Waste Management Licence - NDL/WM/00667/Z10/2014/3

- Own and operate Lubengele Tailings Dam Concentrator
- Own and operate Waste Rock Dump A and B Shaft 1 and 3 Respectively
- Transportation of Tailings by Pipeline Concentrator
- Transportation of Overburden Material/Waste Rock by road Shaft 1 & 3

5. Ozone Depleting Substances Licence - NDL/ODS/00667/Z10/2014/3

• Handling of ozone depleting substances (ODS) – Engineering Services.

We thank you for your continued support.

Yours faithfully,

HASTINGS SHOLANDE MANAGER/HOLDER

CC File

BI-ANNUAL REPORT TO THE ZAMBIA ENVIRONDENTAL MANAGEMENT AGENCY (ZEMA) FOR THE PERIOD JANUARY TO JUNE 2024

PART 1: The Environmental Management (Licensing) Regulations, 2013

1. **PESTICIDE AND TOXIC SUBSTANCE LICENCE (Regulations 25, 27 and 28)**

1.1 Reagents – Processing

The main reagents at Konkola Mine are used in the concentrator and these are Sodium Hydrosulphide, Sodium Isopropyl Xanthate, Frother FZK 245 and Flex 31. The reagents are used in the processing of copper ore to produce copper concentrates. In order to prevent pollution and other health hazards associated with these substances, Konkola Mine ensures transportation, handling, storage and use of these chemicals is in line with good international industry practice by providing preventive and protective measures, training of workers and emergency prevention, preparedness and response arrangements.

1.1.1 Storage – All process reagents are kept at the central storage shed and transported on demand to the reagent mixing shed, which is under a roof and adequately bunded. The store is sized to hold approximately twelve month's operating requirements. A summary of the storage and use of reagents in the reporting period is provided in Table 1 below.

Fig.1: Concentrator Plant

Fig.2: Reagents Storage Shed

Table 1: Process Reagents

S/n	Name	Closing Stock	Opening Stock	To Sister Units	Imported	Stored	Used	Closing Stock	Source	Transporter
	Sodium	31 Dec 23	1 Jan 24	Jan-Jun	Jan-Jun	Jan-Jun	Jan-Jun	30 Jun 24	Tianjin	
1	phide, solid (NaHS)	106,200	106,200	-	-	93,575	12,625	93,575	Forever International Ltd– China	C Steinweg – Durban
2	Sodium Isopropyl Xanthate (SIPX)	25,500	25,500	2,550	_	21,950	1,000	21,950	TC China (Charles Tennant Mining Chemical)- China	C Steinweg - Durban
3	Frother FZK 245, liquid	22,000	22,000	-	-	22,000	8,000	14,000	Betachem Pty Ltd – South Africa	C Steinweg - Durban
4	Flex 31	11,850	11,850	-	12,000	18,300	5,550	18,300	Betachem Pty Ltd – South Africa	C Steinweg - Durban

Table 1 Cont.

S/n	Chemical Name	Source	Transporter	Description Of Storage Facility	Emergency Equipment Available
1	Sodium Hydrosulphide, solid (NaHS)	Tianjin Forever International Ltd– China	C Steinweg – Durban	The storage facility is properly constructed and surrounded by bund walls of sufficient strength capable of retaining one hundred and ten per cent of the amount of reagent contained in the container. Access is restricted by fencing and locking.	Emergency equipment/kit available consists of recirculation pumps, gloves, gas mask, broom, container of absorbent (sawdust/sand), dust pan/spade, empty container for collecting cleaned material
2	Sodium Isopropyl Xanthate (SIPX)	TC China (Charles Tennant Mining Chemical)- China	C Steinweg – Durban	The storage facility is properly constructed and surrounded by bund walls of sufficient strength capable of retaining one hundred and ten per cent of the amount of reagent contained in the container. Access is restricted by fencing and locking.	Emergency equipment/kit available consists of recirculation pumps, gloves, gas mask, broom, container of absorbent (sawdust/sand), dust pan/spade, empty container for collecting cleaned material
3	Frother FZK 245, liquid	Betachem Pty Ltd – South Africa	C Steinweg – Durban	The storage facility is properly constructed and surrounded by bund walls of sufficient strength capable of retaining one hundred and ten per cent of the amount of reagent contained in the container. Access is restricted by fencing and locking.	Emergency equipment/kit available consists of recirculation pumps, gloves, gas mask, broom, container of absorbent (sawdust/sand), dust pan/spade, empty container for collecting cleaned material

4	Flexs 31	Betachem Pty Ltd – South Africa	C Steinweg – Durban	The storage facility is properly constructed and surrounded by bund walls of sufficient strength capable of retaining one hundred and ten per cent of the amount of reagent contained in the container. Access is restricted by fencing and locking.	Emergency equipment/kit available consists of recirculation pumps, gloves, gas mask, broom, container of absorbent (sawdust/sand), dust pan/spade, empty container for collecting cleaned material
---	----------	---------------------------------------	------------------------	--	--

- Unit of measure is tons
- The storage facility is properly constructed and surrounded by bund walls of sufficient strength capable of retaining one hundred and ten per cent of the amount of reagent contained in the container. Access is restricted by fencing and locking.
- Emergency equipment/kit available consists of recirculation pumps, gloves, gas mask, broom, container of absorbent (sawdust/sand), dust pan/spade, empty container for collecting cleaned material.

1.1.2 Importation – All process reagents are imported. Table 1 above provides a summary of the imported reagents, the source and the transporter (C Steinweg Bridge (Pty) Ltd – 151 South Coast Road, Rossburgh Durban) for the reporting period.

1.2 Reagents - Analytical

The analytical facilities at the mine include an assay laboratory, facilities for the analysis of selected water samples and the hospital laboratory. Table 3 below provides a summary of the chemical reagents that were stored and used in the period under review:

Fig.3: Analytical Services Laboratory

Fig.4: Reagent Storage Facility

Table 2: Analytical Reagents

S/n	Chemical Name	Unit Of Measure	Closing Stock	Opening Stock	Quantity to Sister Units	Quantity from Sister Units	Quantity Procured	Quantity Stored	Quantity Used	Closing Stock	Source
			Dec-23	Jan-24	Jan - Jun 2024	Jan - Jun 2024	Jan - Jun 2024	Jan - Jun 2024	Jan - Jun 2024	Jun-24	
1	Chemical, Ammonium Acetate	GM	18,000	18,000	0	0	0	18,000	0	18,000	Micil Inv. Ltd
2	Chemical, Ammonium nitrate,500 gm	GM	1	1	0	0	0	1	0	1	Phisha Gen Chem & Sci Supply Ltd
3	Chemical, Potassium Chloride,500 g	GM	0	0	0	0	2,500	2,500	2,500	0	Octahed ron Ent Ltd

<u>NOTE</u>

- The storage room is properly constructed with concreted floor, surrounded by enclosed walls of sufficient strength with an iron roof and a steel door. Access to the facility is restricted.
- Emergency equipment/kit available consists of PVC Apron, gloves, gas mask, broom, container of absorbent (sawdust/sand), dust pan/spade, empty container for collecting cleaned material.

1.3 Pesticides – Health and Sanitation

KMRL-Konkola Public Health Department uses a number of pesticides to control various pests that may pose a danger to the workforce and the general public within our area of operation. In order to prevent the risks associated with these substances including potential misuse, spills, and accidental human exposure, the department ensures safety guidelines for the storage, transport, and use of pesticides are applied into day-to-day activities. Table 4 below provides a summary of the pesticides usage and quantities in stock.

Fig.5: Public Health Centre

Fig.6: Pesticides Storage Facility

Table 3: Pesticides and Toxic Substances

S/n	Chemical Name	Closing Stock	Opening Stock	To/from Sister Units	Quantity Procured	Quantity Stored	Quantity Used	Closing Stock	Source
		Dec-23	Jan-24	Jan-Jun24	Jan-Jun24	Jan-Jun24	Jan-Jun24	Jan-Jun24	
1	Reskol (Litres)	0	0	0	30	30	10	20	Shumba Ltd
2	Pynol (Litres)	60	60	0	0	60	20	40	Shumba Ltd

<u>NOTE</u>

- The storage area is constructed with concreted floor, walls, roof and a steel door. Access to the facility is restricted as the area is under lock and key.
- Emergency equipment/kit available consists of PVC Apron, gloves, gas mask, broom, container of absorbent (sawdust/sand), dust pan/spade, empty container for collecting cleaned material.
- 1.3.1 **Fumigation** –A summary of the quantities of the pesticides and toxic substances used in the reporting period is provided in Table 3, and the medical records of personnel involved in the handling of these substances is provided are Table 4 below.

Table 4: Personnel involved in fumigation of Pesticides and Toxic Substances

S/n	Name	Mine No.	Date Tested	Medical Centre
1	Bangwa Jonathan	22000706	22.03.2023	Konkola Mine Hospital – Occupational Health
2	Simpungwe Michael	22001429	02.02.2023	Konkola Mine Hospital – Occupational Health

NB: The same personnel involved in fumigation are also involved in blending of the pesticides and toxic substances. Medical tests for public health officers scheduled for August 2024.

1.3.2 Blending –A summary of the quantities of the pesticides and toxic substances used in blending for the reporting period is as provided in Table 3, and the medical records of personnel involved in the handling of these substances are as provided in Table 4.

2. EMISSION LICENCE (EFFLUENT DISCHARGE, Regulation 4)

In order to prevent effluent through our three licenced discharge points from polluting the environment, Konkola mine uses various management and engineering controls. At Konkola, the most significant environmental actions aim at reducing and controlling spillage and leaks from a process control basis. Operational controls are continually improved through internal and external audits; containment areas are constructed and maintained; ponds, containment areas and drains are regularly cleaned out to remove accumulated debris; worn and leaky pipelines are replaced; systems have been put in place to return spillage to the process stream in order to reduce discharges to a minimum; treatment systems are installed on site for effluents prior to being released to the environment. Our Environmental Management System, EMS, includes actions required to prevent pollutants from entering discharges from the mine and hence the environment. Clean-up actions are also addressed. KCM is committed to not only meeting the limits set by Zambian Regulations but achieving the World Bank and IFC guidelines as part of its sustainability program. Below is a summary of the effluent quality and quantity through the licenced drains as monitored in the reporting period.

Fig.7: Combined Drain

Fig.8: Pipe Columns from Underground

Fig.9: Lubengele Tailings Dam Overflow

Fig.10: Engineering Workshops Drain

2.1. UNDERGROUND AND PLANT OVERFLOW INTO KAKOSA STREAM – COMBINED DISCHARGE POINT No. 209.

Konkola Mine is one of the wettest mining operations in the world, and for the safe operation of the underground workings, it is necessary to pump approximately 350, 000m³/day of groundwater from the mine. This amounts to a continuous flow of approximately 4.1m³/s, which is ultimately discharged into the Kafue River.

In order to dewater the Konkola underground mining operations, water is pumped from underground via the following multiple pipes:

- Two 500 mm (16") diameter pipes (new and old) and one 600 mm (20") diameter pipe which provide the process water for the concentrator plant
- One 1200 mm (48") diameter pipe, which discharges directly to the environment
- One 200 mm (8") diameter pipe, which discharges directly to the environment
- One 600 mm (20") diameter pipe, which is treated in sedimentation ponds for domestic water use
- One 200 mm (8") diameter pipe, which is treated in sedimentation ponds before discharge to the environment
- One 200 mm (8") diameter pipe, which is treated in a 250ft thickener before discharge to the environment
- Four 500 mm (16") diameter pipes, which discharges directly to the environment

Konkola mine has a total of 20 settlers underground, 5 Settlers on 1850ft level at Shaft 3, 5 Settlers on 2212ft level at Shaft 1, 4 Settlers on 1150ft level at Shaft 1 and 6 Settlers on 3150ft level at Shaft 1. The settlers are 20m deep and 12m wide. On surface, there are 5 Settlers in which part of the water from underground and concentrator dewatering activities is further treated prior to discharge. Table 9 below provides a summary of the monitoring results for the combined drain in the reporting period. Details of related incidents and causes are provided in table 10.

Table 5:	Underground a	and Plant	combined	effluent	monitoring	results ((Monthly	averages)
10010 5.	Chack Stound C		comonica	cjjincin	monitoring	I COULD	111 Ontente y	averages,

MONTH	FLOW RATE (m ³ /day)	рН	Cond	TSS	TDS	TCu	TFe	TMn	TCo	TPb
January	340,257	8.03	1498.20	19.60	763.20	0.23	0.29	0.04	0.09	0.01
February	317,234	7.75	794.25	20.75	396.75	0.19	0.36	0.23	0.02	0.05
March	316,892	7.85	668.50	17.50	333.50	0.26	0.41	0.01	0.02	0.09
April	317,234	7.84	1202.40	8.20	599.80	0.20	1.41	0.05	0.02	0.02
May	320,017	7.87	1461.50	2.50	729.50	0.05	1.02	< 0.01	0.01	0.05
June	321,697	7.43	1744.25	6.25	871.50	0.10	1.77	< 0.01	0.04	0.01
Average	322,222	7.80	1228.18	21.47	615.71	0.17	0.88	0.08	0.03	0.04
Statutory Limit	ND	6.0 - 9.0	4300	100	3000	1.50	2.00	1.00	1.00	0.50

Table 5 Cont.

MONTH	TCd	Hg	TAs	TCa	TMg	DSO ₄	BOD	COD	DO ₂	NO ₄
January	< 0.01	< 0.01	< 0.01	37.55	21.60	112.36	11.34	14.06	5.50	< 0.01
February	< 0.01	< 0.01	< 0.01	33.64	21.68	190.56	12.34	15.13	5.80	< 0.01
March	< 0.01	< 0.01	< 0.01	42.14	31.47	131.14	13.21	17.24	5.50	< 0.01
April	< 0.01	< 0.01	< 0.01	56.69	48.39	136.81	12.10	22.20	5.60	< 0.01
May	< 0.01	< 0.01	< 0.01	41.58	43.57	158.87	8.00	16.40	6.00	< 0.01
June	< 0.01	< 0.01	< 0.01	40.96	37.13	83.95	7.40	13.70	6.00	< 0.01
Average	<0.01	<0.01	<0.01	42.09	33.97	135.62	10.73	16.46	5.73	<0.01
Statutory	0.500	0.000	0.05	100	500	1500	50	00.0	5 00	50.0
Limit	0.300	0.002	0.05	100	500	1300	50	90.0	5.00	50.0

Table 5 Cont.

MONTH	NO ₃	NH4	PO ₄	Cl	Ur	Temp	Turb	Color	Oil	ТС
January	0.47	0.02	0.02	18.36	< 0.01	21.02	0.56	0.86	< 0.01	< 0.01
February	0.41	0.02	0.02	17.63	< 0.01	22.20	10.57	0.22	< 0.01	< 0.01
March	0.48	0.02	0.02	19.03	< 0.01	21.78	8.13	0.22	< 0.01	< 0.01
April	0.16	< 0.01	0.02	30.20	< 0.01	22.12	3.95	0.21	< 0.01	< 0.01
May	0.47	< 0.01	0.06	33.63	< 0.01	21.93	1.97	1.22	< 0.01	< 0.01
June	0.43	< 0.01	0.04	26.04	< 0.01	19.98	5.69	1.28	< 0.01	< 0.01
Average	0.40	0.02	0.03	24.15	<0.01	21.51	5.15	0.67	<0.01	<0.01
Statutory Limit	2.00	50.00	6.00	800	0.03	40.0	15.0	20.0	5.00	10.00

NOTE

- Analyses are in mg/l except pH, Conductivity (µS/cm), Temperature (°C), Turbidity and Colour.
- ND means not defined
- NR mean not analysed due to faulty/unavailable equipment

2.2. LUBENGELE TAILINGS DAM OVERFLOW INTO LUBENGELE STREAM – DISCHARGE POINT No. 208.

The tailings from the existing concentrator are presently pumped to the Lubengele Tailings Disposal Facility. Overflow from the tailings dam is conveyed to the discharge point through the spillway. Accordingly, samples of discharge water are collected from the concrete channel downstream of the tailings facility (Discharge point 208). Table 10 below provides a summary of the monitoring results for the tailings dam overflow in the reporting period. Details of related incidents and causes are provided in table 10.

MONTH	FLOW RATE (m ³ /day)	рН	Cond	TSS	TDS	TCu	TFe	TMn	TCo	TPb
January	88,384	8.08	851.80	5.80	490.40	0.02	0.23	0.04	0.05	< 0.01
February	36,743	7.86	434.00	6.00	218.00	< 0.01	0.31	0.07	0.08	< 0.01
March	35,589	8.01	474.25	15.25	236.75	< 0.01	0.32	0.02	< 0.01	0.08
April	MF	7.82	917.00	3.25	458.25	0.05	1.22	0.03	< 0.01	0.05
May	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF
June	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF
Average	53,572	7.94	669.26	7.58	350.85	0.04	0.52	0.04	0.07	0.07
Statutory Limit	ND	6.0 - 9.0	4300	100	3000	1.50	2.00	1.00	1.00	0.50

Table 6: Tailings Dam Overflow monitoring results (Monthly averages)

Table 6: Cont.

MONTH	TCd	Hg	TAs	TCa	TMg	DSO ₄	BOD	COD	DO ₂	NO ₄
January	< 0.01	< 0.01	< 0.01	17.45	10.01	88.49	4.36	8.00	6.20	< 0.01
February	< 0.01	< 0.01	< 0.01	16.07	9.59	125.12	4.55	7.60	6.20	< 0.01
March	< 0.01	< 0.01	< 0.01	22.05	15.04	88.49	4.50	7.48	6.60	< 0.01
April	< 0.01	< 0.01	< 0.01	29.45	22.25	112.36	17.20	24.20	5.80	< 0.01
May	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF
June	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF
Average	<0.01	<0.01	<0.01	21.26	14.22	103.62	7.65	11.82	6.20	0.007
Statutory Limit	0.50	0.002	0.05	100	500	1500	50	90.0	5.00	50.00

Table 6: Cont.

MONTH	NO ₃	NH ₄	PO ₄	Cl	Ur	Temp	Turb	Color	Oil	ТС
January	0.38	< 0.01	0.05	8.69	< 0.01	20.96	4.55	0.61	< 0.01	NF
February	0.27	< 0.01	0.03	9.63	< 0.01	22.13	3.86	0.28	< 0.01	< 0.01
March	0.20	< 0.01	0.03	9.60	< 0.01	21.68	10.62	0.26	< 0.01	< 0.01
April	0.12	< 0.01	0.03	26.00	< 0.01	22.00	3.17	0.20	< 0.01	< 0.01
May	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF
June	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF
Average	0.24	<0.01	0.04	13.48	<0.01	21.69	5.55	0.34	<0.01	<0.01
Statutory Limit	2.00	50.00	6.00	800	0.03	40.0	15.0	20.0	5.00	10.00

NOTE

- Analyses are in mg/l except pH, Conductivity (µS/cm), Temperature (°C), Turbidity and Colour.
- ND mean not defined
- MF means minimal flow
- NF mean no flow
- NR mean not analysed due to faulty/unavailable equipment

2.3. ENGINEERING WORKSHOP OVERFLOW INTO LUBENGELE STREAM – DISCHARGE POINT No. 225.

Routine service, repair and overhauls of equipment as well as cleaning of fuelling facilities require the use of water to a limited extent. Accordingly, samples of discharge water are collected from the concrete channel downstream of the central workshops on surface workshops at Engineering Services (Discharge point 225). Table 11 below provides a summary of the monitoring results for the engineering workshops overflow in the reporting period. Details of related incidents and causes are provided in table 14.

Table 7: Engineering Workshops Overflow monitoring results (Monthly averages)

MONTH	FLOW RATE (m ³ /day)	рН	Cond	TSS	TDS	TCu	TFe	TMn	ТСо	TPb
January	NM	7.95	1326.00	7.20	663.00	0.08	1.05	0.06	0.09	0.01
February	122	7.64	663.00	7.75	331.90	0.11	0.30	0.09	0.08	0.05
March	135	7.74	602.75	9.50	301.25	0.14	0.22	0.03	0.01	0.01
April	128	7.59	1040.92	12.20	520.40	0.24	1.05	0.06	0.03	0.04
May	132	7.62	1039.75	30.50	518.75	0.13	1.34	0.06	< 0.01	0.14
June	128	6.95	1496.50	42.25	749.50	0.04	2.64	0.08	0.02	0.04
Average	129	7.58	1028.15	18.23	514.13	0.12	1.10	0.06	0.05	0.05
Statutory Limit	ND	6.0 - 9.0	4300	100	3000	1.50	2.00	1.00	1.00	0.50

Table 7 Cont.

MONTH	TCd	Hg	TAs	TCa	TMg	DSO ₄	BOD	COD	DO ₂	NO ₄
January	< 0.01	< 0.01	< 0.01	37.94	17.71	133.35	9.21	13.21	5.00	< 0.01
February	< 0.01	< 0.01	< 0.01	32.53	18.71	111.95	11.13	14.03	5.60	< 0.01
March	< 0.01	< 0.01	< 0.01	90.51	29.68	301.96	11.42	15.03	5.40	< 0.01
April	< 0.01	< 0.01	< 0.01	43.73	35.62	137.22	16.20	33.00	5.50	< 0.01
May	< 0.01	< 0.01	< 0.01	40.85	40.19	162.96	66.40	118.00	1.80	< 0.01
June	< 0.01	< 0.01	< 0.01	27.89	34.53	120.18	49.20	106.00	3.80	< 0.01
Average	< 0.01	< 0.01	< 0.01	45.58	29.41	161.27	27.26	49.88	4.52	0.045
Statutory Limit	0.50	0.002	0.05	100	500	1500	50	90.0	5.0	50.00

Table 7 Cont.

MONTH	NO ₃	NH4	PO ₄	Cl	Ur	Tem	Turb	Color	Oil	ТС
January	0.23	< 0.01	0.24	16.21	< 0.01	21.06	7.17	0.82	< 0.01	< 0.01
February	0.21	< 0.01	0.22	13.22	< 0.01	21.98	11.15	0.27	5.10	< 0.01
March	0.27	< 0.01	0.22	13.48	< 0.01	21.53	10.19	0.29	< 0.01	< 0.01
April	0.49	< 0.01	0.04	37.87	< 0.01	21.94	14.18	0.61	< 0.01	< 0.01
May	0.43	< 0.01	0.21	38.31	< 0.01	21.85	13.77	2.21	< 0.01	< 0.01
June	0.34	< 0.01	0.17	42.50	< 0.01	19.80	6.69	2.37	< 0.01	< 0.01
Average	0.33	<0.01	0.18	26.93	<0.01	21.36	10.53	1.10	0.01	0.008
Statutory Limit	2.00	50.0	6.00	800	0.03	40.0	15.0	20.0	5.00	10.00

Stand M/1408, Fern Avenue, Private Bag KCM © 2000, Chingola, Zambia Tel: +260 212 350 604, Fax: +260 212 351 225 Incorporated in the Republic of Zambia, Reg.120000010056

NOTE

- Analyses are in mg/l except pH, Conductivity (µS/cm), Temperature (°C), Turbidity and Colour.
- ND mean not defined
- MF means minimal flow
- NR mean not analysed due to faulty/unavailable equipment

PART 3: The Environmental Management (Licensing) Regulations, 2013

3. EMISSION LICENCE (EMISSION TO AIR, Regulation 4)

The permits to emit air pollutants at Konkola Mine relates to the operations of the incinerator at Konkola Mine Hospital and the Emergency Diesel Generators at KDMP (4 Shaft). In order to comply with the general requirements of The Environmental Management (Licensing) Regulations, 2013, Konkola mine has engaged Tibon Environmental Solutions to monitor emissions from the stacks.

Fig.11: Hospital Incinerator Stack

Fig.12: Diesel Generator Stacks

3.1 Emissions To Air – Hospital Incinerator Stack

• Solid waste from the mine hospital, including contaminated medical waste, is collected at the hospital, incinerated and the waste ash disposed of at the designated incinerator ash disposal facility which is a concreted below ground pit located about 800m on the southern side of No. 4 shaft.

Month	Rate (Nm3/Hr)	Dust	СО	SO ₂	NOx	Hg
January	1136.00	38.584	27.91	19.05	36.59	0.000077
February	828.71	46.01	58.32	14.29	27.22	0.000092
March	NR	NR	NR	NR	NR	NR
April	NR	NR	NR	NR	NR	NR
May	931.48	42.99	69.98	27.63	34.81	0.000043
June	1124.95	45.44	72.89	5.72	17.85	0.000091
Average	1005.28	43.25	57.27	16.67	29.12	0.00007575
Statutory Limit	ND	100	100	850	460	0.05

Table 8: Hospital incinerator stack monitoring results

NOTE

- Unit of measure is mg/Nm3.
- NR mean not analysed due to faulty/unavailable equipment

3.2 Emissions To Air – Diesel Generator Stacks

The diesel generators were installed to provide power required for ventilation, man riding and pumping in an emergency. Table 13 below provides a summary of the monitoring results for the stacks. Details of related incidents and causes are provided in table 14.

MONTH		Stac	k 1		Stack 2				Stack 3			
	Rate (Nm3/H)	Dust	SO ₂	СО	Rate (Nm3/H)	Dust	SO ₂	СО	Rate (Nm3/H)	Dust	SO ₂	СО
January	34,945.27	40.39	77.17	97.48	30,265.93	38.48	51.45	113.72	36,658.67	42.98	60.02	101.22
February	27,839.95	40.54	65.74	81.23	30,492.67	46.60	82.89	98.73	30,480.27	41.77	54.30	87.48
March	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
April	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
May	28,594.22	47.23	54.31	109.14	30,544.34	47.85	45.73	124.14	28,508.42	43.05	43.05	98.73
June	28,285.76	42.82	52.40	97.89	30,742.83	44.69	67.64	109.56	30,952.41	43.17	75.26	102.47
Average	29,916.3	42.75	62.41	96.44	30,511.44	44.40	61.93	111.53	31,649.94	42.74	58.16	97.48
Stat Limit	ND	100	100	850	ND	100	100	850	ND	100	100	850

Table 9: DG Set stack monitoring results

NOTE

- Unit of measure is mg/Nm3.
- NR- Not reported due to faulty/equipment unavailability.

INCIDENTS RECORDED:

Table 10: Emission related incidents

Date	Purpose of Operation	Details of Noncompliance	Cause	Corrective /Preventive Measures	Current Status
January, February March, April, May & June 2024	Underground Dewatering (209)	Dissolved Oxygen (DO) was above the statutory limit at the Combined Drain Station 209: January (5.5mg/l), February (5.8mg/l), March (5.5mg/l), April (5.6mg/l) May (6.0mg/l) and June (6.0mg/l) against 5.00mg/l Limit.	Natural Occurrence	N/A	Effective implementation of water pollution controls is ongoing
January, February, March and April	Waste Disposal/ Tailings Dam Station (208)	Dissolved Oxygen (DO) was above the statutory limit at the Tailings Dam Overflow station 208: January (6.2mg/l), February (6.2mg/l), March (6.6mg/l), April(5.8mg/l) against 5.00mg/l Limit	Natural Occurrence	N/A	Effective implementation of water pollution controls is ongoing
February March and April2024	Equipment maintenance and repair (225)	Dissolved Oxygen (DO) was above the statutory limit at the Engineering Drain Station 225: February (5.6mg/l), March (5.4mg/l), April (5.5mg/l) against 5.00mg/l limit	Natural Occurrence	N/A	Effective implementation of water pollution controls is ongoing
May and June 2024	Equipment maintenance and repair (225)	COD was above statutory limit at Engineering drain 225 in May (118.0mg/l) and June (106.0mg/l) against 90.0mg/l limit	Natural Occurrence	N/A	Effective implementation of water pollution controls is ongoing
May 2024	Equipment maintenance and repair (225)	BOD was above statutory limit at Engineering drain 225 in May (66.4mg/l) against 50.0 mg/l limit	Natural Occurrence	N/A	Effective implementation of water pollution controls is ongoing
June 2024	Equipment maintenance and repair (225)	Iron (Fe) was above statutory limit at Engineering drain 225 in June (2.64mg/l) against 2.00 mg/l limit	Contaminated material from the immediate surroundings washed/carried over into the drain.	Effective implementation of water pollution controls is ongoing	On-going

PART 4: The Environmental Management (Licensing) Regulations, 2013

4. HAZARDOUS WASTE LICENCE (GENERATION AND STORAGE, Regulation 19)

The plant generates hazardous waste namely; waste oil, used fluorescent tubes and used batteries. Waste oil is stored on constructed bays with impervious floors and bund walls and eventually reused at Nchanga Smelter as fuel. Spent fluorescent tubes are stored within the plant premises in fabricated storage drums while batteries are stored in the hazardous materials store before it is disposed of through recycling/reuse contractors. The quantities generated are presented in table 15 below.

Fig.14: Used Oil Store – Shaft 1

Fig.15: Used Batteries and Fluorescent tubes

HAZARDOUS WASTE GENERATED, STORED AND DISPOSED

Table 11 (a): Hazardous waste

Month		Used Oil	Generated		U	sed Oil Store	Used Oil Disposed	
	Eng.	Shaft 1	Shaft 3	Total	Shaft 1	Shaft 3	Total	Konkola
Jan-24	0	3.01	14.14	17.15	3.01	14.14	17.15	17.15
Feb-24	0	7.59	9.88	17.47	7.59	9.88	17.47	17.47
Mar-24	0	0	2.520	2.26	0	2.520	2.26	0
Apr-24	0	0	0.420	0.376	0	0.420	0.376	0
May-24	0	0	0.21	0.19	0	0.21	0.19	0
Jun-24	0	2.82	1.34	4.17	2.82	1.34	4.17	0
TOTAL		13.42	28.51	41.62	13.42	28.51	41.62	34.62

<u>NOTE</u>

• Unit of measure is tons.

Table 11 (b): Hazardous waste

Month		Used Batter	ies Generat	ed	Used	Batteries St	ored	Used Batteries Disposed
	Eng.	Shaft 1	Shaft 3	Total	Shaft 1	Shaft 3	Total	Konkola
Jan-24	0	0	0.075	0.075	0	0.075	10.385	0.075
Feb-24	0	0	0.060	0.060	0	0.060	10.445	0.060
Mar-24	0	0	0.060	0.060	0	0.060	10.505	0.060
Apr-24	0	0	0.00	0.00	0	0.00	10.505	0.00
May-24	0	0	0.00	0.00	0	0.00	10.505	0.00
Jun-24	0	0	0.00	0.00	0	0.00	10.505	0.00
TOTAL	0	0	0.195	0.195	0	0.195		0.195

NOTE

• Unit of measure is tons.

Table 11 (c): Hazardous waste

Month	Opening Stock	Used	Fluorescer	nt Tubes G	enerated	Used	Fluorescen Stored	t Tubes	Used Fluorescent Tubes Disposed	Closing Stock
		Eng.	Shaft 1	Shaft 3	Total	Shaft 1	Shaft 3	Total	Konkola	
Jan-24	1.223	0	0	0.001	0.001	0	0.001	1.224	0	1.224
Feb-24	1.224	0	0	0.001	0.001	0	0.001	1.225	0	1.225
Mar-24	1.225	0	0	0.002	0.002	0	0.002	1.227	0	1.227
Apr-24	1.227	0	0	0.002	0.002	0	0.002	1.229	0	1.229
May-24	1.229	0	0	0.001	0.001	0	0.001	1.230	0	1.230
Jun-24	1.230	0	0	0.00	0.00	0	0.00	1.230	0	1.230
TOTAL		0	0	0.007	0.007	0	0.007	1.230	0	1.230

NOTE

• Unit of measure is tons.

4.1 PERSONNEL INVOLVED IN MANAGEMENT OF HAZARDOUS WASTE

32 Employees involved in management of hazardous waste underwent tetanus vaccinations.

Table 12: List of employees

S.no	Mine number	Name	Medical Center
1	RM 616	Simwanza Dismas	Konkola Mine Hospital – Occupational Health
2	22000929	Mwewa Musonda	Konkola Mine Hospital – Occupational Health
3	22000911	Mambwe Edgar	Konkola Mine Hospital – Occupational Health

4	22000563	Kasakula Richard	Konkola Mine Hospital – Occupational Health
5	22000761	Maurice Chikoyi	Konkola Mine Hospital – Occupational Health
6	RM 2783	Kasonka Moses	Konkola Mine Hospital – Occupational Health
7	RM 3438	Mwaipungu Luke	Konkola Mine Hospital – Occupational Health
8	RM 3435	Ndapatwa Andrew	Konkola Mine Hospital – Occupational Health
9	RM 3260	Banda William	Konkola Mine Hospital – Occupational Health
10	RM 0007	Chisanga John	Konkola Mine Hospital – Occupational Health
11	RM 2009	Kita Lawrence	Konkola Mine Hospital – Occupational Health
12	22001163	Simfukwe Justin	Konkola Mine Hospital – Occupational Health
13	22001242	Hanakamba steven	Konkola Mine Hospital – Occupational Health
14	RM 3268	Mubanga Mulenga	Konkola Mine Hospital – Occupational Health
15	22001509	Siame Edgar	Konkola Mine Hospital – Occupational Health
16	22000162	Alefa Banda	Konkola Mine Hospital – Occupational Health
17	22000892	Shoma Sitome	Konkola Mine Hospital – Occupational Health
18	22000812	Naweji Michael	Konkola Mine Hospital – Occupational Health
19	22000989	Simutowe James	Konkola Mine Hospital – Occupational Health
20	22001418	Mugala Jack	Konkola Mine Hospital – Occupational Health
21	22001562	Musankabala Floyd	Konkola Mine Hospital – Occupational Health
22	22001670	Chansa Joshua	Konkola Mine Hospital – Occupational Health
23	22001420	Fisanga Emmanuel	Konkola Mine Hospital – Occupational Health
24	22001474	Kawimbe Anthony	Konkola Mine Hospital – Occupational Health
25	RM 1999	Lungu Danny	Konkola Mine Hospital – Occupational Health
26	RMC 442	Ngulube Jameson	Konkola Mine Hospital – Occupational Health
27	RMC 098	Sakeza Gift	Konkola Mine Hospital – Occupational Health
28	RM 1316	Chibuye Ian	Konkola Mine Hospital – Occupational Health
29	RM 2483	Mulega Bruce	Konkola Mine Hospital – Occupational Health
30	RMC 078	Zulu Emmanuel	Konkola Mine Hospital – Occupational Health
31	RM 2121	Kasobe Mwelwa	Konkola Mine Hospital – Occupational Health
32	RMC 824	Munshya Mwila	Konkola Mine Hospital – Occupational Health
33	RM 2312	Kanengoki Gregory	Konkola Mine Hospital – Occupational Health
34	RM 2484	Sinyangwe Joseph	Konkola Mine Hospital – Occupational Health
35	RM 2001	Banda mike MBILI	Konkola Mine Hospital – Occupational Health
36	RM 1805	Simwaba Lameck	Konkola Mine Hospital – Occupational Health
37	RMC 455	Sabuni Derrick	Konkola Mine Hospital – Occupational Health
38	RMC 852	Chama Christopher	Konkola Mine Hospital – Occupational Health

4.2 GENERATION OF HEALTHCARE WASTE

• Solid waste from the mine hospitals, including contaminated medical waste, is collected at the hospital, incinerated and the waste ash disposed of at the designated incinerator ash disposal facility which is a concreted below ground pit located about 800m on the southern side of No. 4 shaft. The quantities generated are presented in Table 13 below.

Month	Opening	Clinical	Waste Gen	erated	Clinica Sto	ll Waste ored	Clinical Waste Incinerated	Ash
	Stock	Clinics	Hospital	Total	Clinics	Hospital	Konkola Mine Hospital	Generated Jan-Jun
Jun-24	0	0.071	0.810	0.881	0.071	0.810	0.860	0.096
Feb-24	0	0.056	0.757	0.813	0.056	0.757	0.816	0.088
Mar-24	0	0.001	0.805	0.806	0.001	0.805	0.815	0.091
Apr-24	0	0.083	1.017	1.1	0.083	1.017	1.100	0.135
May-24	0	0.011	1.529	1.54	0.011	1.529	1.540	0.147
Jun-24	0	0.167	1.545	1.713	0.167	1.545	1.713	0.224
TOTAL	0	0.389	6.463	6.853	0.389	6.463	6.844	0.781

Table 13: Healthcare waste generated

<u>NOTE</u>

• Unit of measure is tons.

4.3 TRANSPORTATION OF HEALTHCARE WASTE

Healthcare waste generated from Konkola Mine Hospital & the satellite clinics was transported to Konkola Mine hospital incinerator for incineration. Waste is put in a special container and transported on the back of a van. Hazard warning signage is placed on the container and van during transportation. Table 18 below presents a summary of the healthcare waste transported. No incidences/accidental spillages relating to the transportation of healthcare waste were recorded in the reporting period.

Month	Source	Quantity	Mode of Transport	Destination	Disposal
January	HC 1,4 and 5	0.071	Van with steel container	Konkola Hospital	Incineration
February	HC 1,4 and 5	0.056	Van with steel container	Konkola Hospital	Incineration
March	HC 1,4 and 5	0.001	Van with steel container	Konkola Hospital	Incineration
April	HC 1,4 and 5	0.083	Van with steel container	Konkola Hospital	Incineration
May	HC 1,4 and 5	0.011	Van with steel container	Konkola Hospital	Incineration
June	HC 1,4 and 5	0.167	Van with steel container	Konkola Hospital	Incineration
TOTAL	HC 1,4 and 5	0.389			

Table 14: Healthcare waste transported

- Unit of measure is tons.
- HC means Health Centre.

4.4 GENERATION, TRANSPORTATION AND HANDLING OF EXPIRED CHEMICALS

There were no chemicals that expired during the period under review. Purchase Order No. 2000015412 has been issued to Chilanga Cement Limited (Geo-Cycle Project) for disposal of all previously expired chemicals which have been identified, counted and packaged. ZEMA representatives will be invited to witness the said disposal tentatively scheduled for August 2024.

PART 5: The Environmental Management (Licensing) Regulations, 2013

5. WASTE MANAGEMENT LICENCE

There are two waste rock dumps, adjacent to each of the shafts. The "A" Dump is situated adjacent to and to the South West of No. 1 Shaft. This dump was started in 1955, covers approximately 22.5ha. The "B" Dump, started in 1957, is situated adjacent and to the North West of the No. 3 Shaft, covers an area of approximately 11ha. Reclamation of waste rock from the dumps for aggregate production is ongoing in a controlled manner.

Tailings are pumped to the Lubengele Tailings Dam, which lies to the North of the plant site. The Lubengele Tailings Dam is a valley dam (started in 1964) with a 28.5m high wall formed with cycloned coarse tailings. The current maximum available capacity is 105Mt and about 100.535Mt has been deposited since it was started in 1964. Tailings material is transported from the concentrator through one of two steel pipelines, operated alternately, and is discharged primarily from the Eastern side of the impoundment. The Lubengele Dam is located in a large catchment area of 61km² and captures the drainage from four streams, namely the Lubengele, Kawiri, Michelo and the Ming'omba streams. Runoff from this area together with tailings water is decanted through the spillway into the Lubengele Stream and ultimately into the Kafue River.

5.1 LUBENGELE TAILINGS DAM

In order to ensure safe operating conditions of the tailings dam, Konkola mine has engaged an independent consultant [Knight Piesold] to conduct periodical assessments. Below is a summary of the status of the dam.

Fig.16: Lubengele Tailings Dam Wall

Fig. 17: Lubengele Tailings Dam Beach

Fig.16: Lubengele Tailings Dam Wall

Fig.17: Tailings Discharge Column

5.1.1 Embankment Integrity

a) <u>Stability</u>

The eastern embankment of the tailings dam which susceptible to dust is generally maintained in good order with vegetation well established on most portions of the slope. There were no community complaints in the period under review

Fig.18: Lubengele Tailings Dam Wall

Fig.19: Lubengele Tailings Dam Wall

b) <u>Vegetation</u>

Work towards revegetation of areas of the tailings embankments to reduce on erosion is undertaken on an ongoing basis. The replanting involves a selection of tree and grass species and stock is obtained from local suppliers.

Fig.20: Lubengele Tailings Dam Surrounding Fig.21: Lubengele Tailings Dam Surrounding

ung Pig.21. Lubengeie Tunings Dum

c) <u>Seepage</u>

There are a number of dug wells adjacent to and upstream of the dam. Table 15 below shows the quality of groundwater around the dam. SDH19 and SDS01 are controls.

Fig.22: Lubengele Tailings Dam Borehole

Fig.23: Lubengele Tailings Dam Borehole

d) Access Restrictions to the Dam

The tailings dam is a vast area and therefore no fencing has been provided to restrict access. However, in order to prevent illegal entry by unauthorized persons, appropriate warning signage is displayed at various points around the dam. The perimeter is also under 24 hours surveillance by Mine Security Personnel. Despite all the effort, illegal fishing and washing of clothing is occasionally practiced. Due to the fact that unauthorised fishing from the dam could represent a health risk, fish and water quality from the dam is periodically tested. Sampling of fish and water from the Lubengele Tailings Dam was conducted in the review period.

Fig.24: Lubengele Tailings Dam

Fig.25: Lubengele Tailings Dam

5.1.2 Concentrator Plant Material Bal	ances
---------------------------------------	-------

Month/2024	Input to Plant	Concentrates Produced	Tailings Disposed at Lubengele Dam (Dump C)	Tailings Used In Backfilling	Balance
January	19,830.30	1,306.49	18,523.82	0	18,523.82
February	0	61.16	0	0	0
March	19,387.67	1,673.52	17,714.15	0	17,714.15
April	0	0	0	0	0
May	12,322.92	977.44	11,345.48	0	11,345.48
June	0	0	0	0	0
TOTAL	51,540.89	4,018.61	47,583.44	0.00	47,583.44

Table 15: Concentrator plant material

NOTE

- 1. Unit of measure is tons.
- 2. The difference in mass balance is mainly due to moisture content

Fig.26: West Backfill Plant

Fig.27: East Backfill Plant

5.1.3 Chemical Analysis of tailings to the Lubengele Tailings Dam

Month/2024	%Cu	%ASCu	%Co	%Fe	%S	%SiO2
January	0.385	0.242	0.031	NR	NR	NR
February	0	0	0	NR	NR	NR
March	0.558	0.278	0.031	NR	NR	NR
April	0	0	0	NR	NR	NR
May	0.470	0.231	0.036	NR	NR	NR
June	0	0	0	NR	NR	NR
Average	0.471	0.250	0.033	NR	NR	NR

Table 16: Tailings comp	osition
-------------------------	---------

NOTE

- Assays done on monthly composite samples
- NR mean not analysed due to faulty/unavailable equipment

5.1.4 Quality of Groundwater as Monitored in Wells and Boreholes Around the Dam

MONTH	Well/Bore hole	рН	Cond	TSS	TDS	TCu	TFe	TMn	ТСо	TPb
January										
Lubengele	SDH17	5.48	71	1	36	0.09	0.62	< 0.01	0.18	< 0.01
	SDH19	5.15	52	5	26	0.08	0.58	< 0.01	0.08	< 0.01
	KO6	6.57	1170	7	585	0.06	0.40	0.47	0.14	2.43
Tanings Dani	SDS01	7.21	1459	2	726	0.03	0.30	0.52	0.23	< 0.01
	PPZ	5.94	1255	7	629	0.03	0.25	0.02	0.25	< 0.01
February										
	SDH17	5.85	70	3	35	< 0.01	1.70	< 0.01	< 0.01	< 0.01
Lubancala	SDH19	5.11	90	5	46	< 0.01	1.10	< 0.01	< 0.01	< 0.01
Lubengele Tailings Dom	KO6	5.30	60	4	31	< 0.01	1.38	0.01	< 0.01	< 0.01
Tanings Dani	SDS01	7.16	970	5	483	< 0.01	1.48	0.05	< 0.01	< 0.01
	PPZ	5.52	1440	5	719	< 0.01	1.35	0.04	< 0.01	< 0.01
March										
	SDH17	7.37	352	1	175	< 0.01	< 0.01	0.14	< 0.01	< 0.01
Tubanasla	SDH19	7.47	269	1	134	< 0.01	< 0.01	0.09	< 0.01	< 0.01
Tailings Dom	KO6	7.22	391	1	195	< 0.01	< 0.01	0.52	< 0.01	< 0.01
1 annigs Dani	SDS01	7.27	395	1	197	< 0.01	< 0.01	0.64	< 0.01	< 0.01
	PPZ	5.96	384	6	192	< 0.01	< 0.01	0.06	< 0.01	< 0.01

Stand M/1408, Fern Avenue, Private Bag KCM © 2000, Chingola, Zambia Tel: +260 212 350 604, Fax: +260 212 351 225 Incorporated in the Republic of Zambia, Reg.120000010056

April										
	SDH17	5.97	21.7	4	10	< 0.01	0.81	0.04	< 0.01	< 0.01
Lubangala	SDH19	5.60	20.1	20	10	< 0.01	0.76	< 0.01	< 0.01	< 0.01
Tailings Dam	KO6	5.67	432	5	215	< 0.01	0.74	< 0.01	< 0.01	< 0.01
Tanings Dan	SDS01	6.84	34.7	17	17	< 0.01	1.55	2.78	< 0.01	< 0.01
	PPZ	5.80	442	3	221	< 0.01	0.89	0.10	< 0.01	< 0.01
May										
	SDH17	5.70	77	1	39	< 0.01	1.11	< 0.01	< 0.01	< 0.01
Lubangala	SDH19	5.24	57	1	29	< 0.01	0.70	< 0.01	< 0.01	< 0.01
Lubengele	KO6	5.38	269	2	136	< 0.01	1.25	0.05	< 0.01	< 0.01
Tannigs Dani	SDS01	6.97	908	2	457	< 0.01	1.24	< 0.01	< 0.01	< 0.01
	PPZ	5.62	905	5	455	< 0.01	0.88	< 0.01	< 0.01	< 0.01
June										
	SDH17	5.48	88	3	44	< 0.01	3.46	0.06	< 0.01	< 0.01
Lubanasla	SDH19	5.19	71	6	35	< 0.01	1.20	0.06	< 0.01	< 0.01
Lubengele	KO6	6.04	348	3	175	< 0.01	1.16	0.08	< 0.01	< 0.01
1 Tannigs Dani	SDS01	6.86	1367	5	684	0.02	0.93	0.86	< 0.01	< 0.01
	PPZ	5.75	992	2	494	< 0.01	4.13	0.01	< 0.01	< 0.01
Statutory Limit		ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 17: Cont.

MONTH		TCd	Hg	TAs	TCa	TMg	DSO ₄	BOD	COD	DO ₂
January										
	SDH 17	< 0.01	< 0.01	< 0.01	2.89	1.38	13.99	8.04	14.2	5.4
	SDH 19	< 0.01	< 0.01	< 0.01	36.14	18.82	147.75	10.11	12.04	5.8
Lubengele Tailings	KO 6	< 0.01	< 0.01	< 0.01	35.91	19.35	135.00	5.02	6.12	6.0
Dam	SDS 01	<0.01	<0.01	<0.01	3.34	1.28	100.84	5.02	4.11	6.2
	PPZ	< 0.01	< 0.01	< 0.01	8.22	11.80	11.94	5.0	7.24	6.0
February										
	SDH 17	< 0.01	< 0.01	< 0.01	0.34	1.08	NR	5.18	4.28	6.4
	SDH 19	< 0.01	< 0.01	< 0.01	0.05	0.94	NR	9.11	10.22	5.8
Lubengele Tailings	KO 6	< 0.01	< 0.01	< 0.01	0.06	1.09	NR	4.11	8.13	6.4
Dalli	SDS 01	< 0.01	< 0.01	< 0.01	29.64	13.26	NR	9.50	11.02	6.4
	PPZ	< 0.01	< 0.01	< 0.01	2.70	11.32	NR	5.4	7.00	6.2
March										
	SDH 17	< 0.01	< 0.01	< 0.01	35.91	19.35	135.00	5.28	4.28	6.2
T 1 1 77 11	SDH 19	< 0.01	< 0.01	< 0.01	3.34	1.28	100.84	8.76	11.20	5.6
Lubengele Tailings	KO 6	< 0.01	< 0.01	< 0.01	2.89	1.38	13.99	3.96	8.36	6.5
Dam	SDS 01	< 0.01	< 0.01	< 0.01	36.14	18.82	147.75	8.95	10.34	6.4
	PPZ	< 0.01	< 0.01	< 0.01	8.22	11.80	11.94	5.83	7.0	6.0
April										
	SDH 17	< 0.01	< 0.01	< 0.01	67.22	35.42	110.30	11.4	15.8	6.2
	SDH 19	< 0.01	< 0.01	< 0.01	75.51	39.60	78.61	11.2	18.0	6.1
	KO 6	< 0.01	< 0.01	< 0.01	0.62	1.30	82.31	8.3	12.0	6.3
	SDS 01	< 0.01	< 0.01	< 0.01	0.45	1.30	111.54	8.4	10.0	6.6
	PPZ	< 0.01	<0.01	< 0.01	0.48	1.21	114.01	9.4	15.3	6.0
May										

	SDH 17	< 0.01	< 0.01	< 0.01	79.88	40.41	65.85	6.0	13.2	6.7
	SDH 19	< 0.01	< 0.01	< 0.01	1.78	2.39	197.97	4.0	7.6	6.5
Lubengele Tailings Dam	KO 6	< 0.01	< 0.01	< 0.01	0.21	0.86	190.56	8.0	15.2	7.1
	SDS 1	< 0.01	< 0.01	< 0.01	3.14	7.22	68.73	18.0	32.8	5.5
	PPZ	< 0.01	< 0.01	< 0.01	6.33	17.41	67.07	7.8	14.3	6.5
June										
	SDH 17	< 0.01	< 0.01	< 0.01	0.01	1.12	NR	6.5	12.4	6.4
	SDH 19	< 0.01	< 0.01	< 0.01	0.01	1.42	NR	5.13	8.32	6.2
	KO 6	< 0.01	< 0.01	< 0.01	8.80	11.12	NR	7.98	13.85	7.0
	SDS 1	< 0.01	< 0.01	< 0.01	64.84	38.61	NR	14.0	30.14	5.8
	PPZ	< 0.01	< 0.01	< 0.01	3.55	13.41	NR	6.2	12.0	6.8
Statutory Limit	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 17: Cont.

MONTH		NO ₄	NO ₃	NH ₄	PO ₄	Cl	Ur	Tem	Turb	Color
January										
	SDH17	< 0.01	0.13	< 0.01	< 0.01	1.58	< 0.01	22.6	0.56	0.31
	SDH19	< 0.01	0.11	< 0.01	< 0.01	8.69	< 0.01	22.8	0.36	0.87
Lubengele	KO6	< 0.01	0.21	< 0.01	< 0.01	15.86	< 0.01	22.6	0.87	0.52
Tannigs Dani	SDS01	< 0.01	0.10	< 0.01	< 0.01	14.66	< 0.01	22.6	1.28	0.43
	PPZ	< 0.01	0.56	< 0.01	< 0.01	11.56	< 0.01	22.7	0.59	0.33
February										
	SDH17	< 0.01	0.07	< 0.01	< 0.01	1.04	< 0.01	20.1	1.0	0.33
T 1 1	SDH19	< 0.01	0.11	< 0.01	< 0.01	1.22	< 0.01	20.3	1.22	0.87
Lubengele	KO6	< 0.01	0.23	< 0.01	< 0.01	15.13	< 0.01	20.2	4.49	0.50
Tannigs Dani	SDS01	< 0.01	0.20	< 0.01	< 0.01	14.16	< 0.01	20.2	2.51	0.18
	PPZ	< 0.01	0.43	< 0.01	< 0.01	15.36	< 0.01	20.2	4.10	0.27
March										
	SDH17	< 0.01	0.02	< 0.01	< 0.01	2.03	< 0.01	22.9	3.66	0.27
.	SDH19	< 0.01	0.17	< 0.01	< 0.01	1.24	< 0.01	22.5	2.15	0.76
Lubengele	KO6	< 0.01	0.28	< 0.01	< 0.01	14.17	< 0.01	22.3	1.97	0.43
Tannigs Dani	SDS01	< 0.01	0.22	< 0.01	< 0.01	14.26	< 0.01	22.5	4.57	0.15
	PPZ	< 0.01	0.53	< 0.01	< 0.01	15.14	< 0.01	22.6	4.75	0.22
April										
	SDH17	< 0.01	0.19	< 0.01	< 0.01	2.88	< 0.01	23.4	3.1	0.24
T 1 1	SDH19	< 0.01	0.12	< 0.01	< 0.01	2.38	< 0.01	23.3	0.21	0.20
Lubengele Tailings Dam	KO6	< 0.01	0.21	< 0.01	< 0.01	7.63	< 0.01	23.3	1.43	0.34
Tannigs Dani	SDS01	< 0.01	0.21	< 0.01	< 0.01	25.47	< 0.01	23.4	2.14	0.20
	PPZ	< 0.01	0.87	< 0.01	< 0.01	68.04	< 0.01	23.3	6.61	0.30
May										
	SDH17	< 0.01	< 0.01	< 0.01	< 0.01	2.31	< 0.01	23.6	1.15	2.3
T 1 1	SDH19	< 0.01	< 0.01	< 0.01	< 0.01	1.68	< 0.01	23.6	1.11	0.47
Lubengele Tailings Dam	KO6	< 0.01	< 0.01	< 0.01	< 0.01	4.33	< 0.01	23.3	4.11	1.23
1 annigs Dani	SDS01	< 0.01	< 0.01	<0.01	< 0.01	36.33	< 0.01	23.0	2.93	0.87
	PPZ	< 0.01	< 0.01	<0.01	<0.01	10.63	<0.01	23.7	4.31	0.78

Stand M/1408, Fern Avenue, Private Bag KCM © 2000, Chingola, Zambia Tel: +260 212 350 604, Fax: +260 212 351 225 Incorporated in the Republic of Zambia, Reg.120000010056

June										
Lubengele	SDH17	< 0.01	0.21	< 0.01	< 0.01	2.64	< 0.01	18.6	1.01	2.26
	SDH19	< 0.01	0.13	< 0.01	< 0.01	1.88	< 0.01	18.7	1.17	0.54
	KO6	< 0.01	0.13	< 0.01	< 0.01	4.57	< 0.01	18.8	2.50	1.14
Tannigs Dani	SDS01	< 0.01	< 0.01	< 0.01	< 0.01	34.21	< 0.01	18.8	1.43	0.77
	PPZ	< 0.01	< 0.01	< 0.01	< 0.01	12.05	< 0.01	18.7	5.62	1.41
Statutory Limit		ND	ND	ND	ND	ND	ND	ND	ND	ND

• ND means not defined

Lubengele Tailings Dam fish toxicological tests

• Fish and water from the tailings dam was sampled on 05 June 2024. Awaiting analysis and results from university of Zambia School of Agriculture Laboratory.

5.2 LUBENGELE TAILINGS PIPELINE

5.2.1 Physical State

• The tailings pipeline is a 300 mm diameter, 8.4 km long rubber lined steel pipeline which delivers tailings from the process plant for disposal in the tailings facility. The pipeline was newly installed with a 25 year guarantee. A second tailings pipeline is available for use during maintenance of the main pipeline.

Fig.28: Lubengele Tailings PipelineFig.29: Lubengele Tailings Pipeline

5.2.2 Accidental Spillage/Leakage

Daily monitoring of the pipeline is undertaken to ensure that any spillages are identified and dealt with quickly. Visual inspections of the entire length of the tailings delivery line are undertaken by the Dam Operator of the Concentrator Department. Any spillages detected are immediately reported to the Plant Manager who ensures that the following actions are undertaken:

- The tailings delivery is switched into the second pipeline, and the damage to the main pipeline is repaired. Once the repairs are complete, use of the main pipeline resumes
- A clean-up team is dispatched immediately once the spillage has been reported. Spilled tailings are returned to the tailings facility
- Monthly inspections to check for deterioration of the pipeline (e.g. corrosion) are undertaken

No instances of spillages/leaks from the pipeline were recorded in the reporting period.

5.3 WASTE ROCK DUMPS

Monitoring of the waste rock dumps is undertaken on an ongoing basis regarding volumes of waste rock disposed on the dumps and visual inspection for sign of instability and/or erosion.

Fig.30: Waste Rock Dump A

Fig.31: Waste Rock Dump B

5.3.1 Dump Integrity

a) <u>Stability</u>

The dumps are generally well maintained. Both dumps are currently being reclaimed for building/construction material. Slopes are stable and top surfaces well maintained. Tension cracks are filled as they appear.

Fig.32: Waste Rock Dump A

Fig.33: Waste Rock Dump B

b) <u>Vegetation</u>

There is no vegetation on the dump. The surrounding areas are however well vegetated with no evidence of negative effects arising from erosion.

Fig.34: Waste Rock Dump A

Fig.35: Waste Rock Dump B

c) <u>Seepage</u>

There are two monitoring boreholes on each waste rock dump to monitor the quality of groundwater to ascertain whether our operations are impacting on the groundwater resources. Monitoring results are presented in Table 20 above. WDA 1 and WDB 1 are controls.

Fig.36: Waste Rock Dump A Borehole

Fig.37: Waste Rock Dump B Borehole

Table 18: Groundwater quality – Waste Rock Dump A and B

MONTH	Well/ Borehole	рН	Cond	TSS	TDS	TCu	TFe	TMn	TCo	TPb
January										
Waste Rock	WDA01	7.54	995	5	498	0.05	0.83	0.09	0.20	0.37
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	7.51	1092	5	546	0.03	0.02	0.04	0.18	1.09
Dump B	WDB02	7.47	1128	3	563	0.04	0.79	0.07	0.24	< 0.01

February										
Waste Rock	WDA01	7.42	903	8	452.00	< 0.01	1.95	0.03	< 0.01	0.33
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	7.34	899	7	449	< 0.01	1.56	0.03	< 0.01	< 0.01
Dump B	WDB02	7.29	868	18	434	< 0.01	1.91	0.03	< 0.01	< 0.01
March										
Waste Rock	WDA01	7.63	95	1	48	< 0.01	< 0.01	0.13	< 0.01	< 0.01
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	7.48	350	1	175	< 0.01	< 0.01	0.18	< 0.01	< 0.01
Dump B	WDB02	7.48	355	4	177	< 0.01	< 0.01	0.16	< 0.01	< 0.01
April										
Waste Rock	WDA01	7.45	416	3	207	< 0.01	1.11	< 0.01	< 0.01	< 0.01
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	7.60	415	10	208	< 0.01	1.06	0.21	< 0.01	< 0.01
Dump B	WDB02	7.37	476	5	237	< 0.01	1.16	0.21	< 0.01	0.03
May										
Waste Rock	WDA01	7.26	1071	2	539	< 0.01	0.30	0.16	< 0.01	< 0.01
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	7.17	1590	2	795	< 0.01	1.29	0.19	0.18	< 0.01
Dump B	WDB02	7.26	865	2	434	< 0.01	1.64	0.09	< 0.01	< 0.01
June										
Waste Rock	WDA01	7.44	909	2.00	456	< 0.01	< 0.01	0.03	0.11	< 0.01
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	7.03	1527	2	763	< 0.01	3.80	0.31	0.03	< 0.01
Dump B	WDB02	6.99	1470	4	735	< 0.01	5.14	0.29	< 0.01	< 0.01
Statutory Limit		ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 18: Cont.

MONTH		TCd	Hg	TAs	TCa	TMg	DSO ₄	BOD	COD	DO ₂
January										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	28.31	14.71	53.50	5.2	8.46	6.4
Dump A	WDA02	< 0.01	< 0.01	< 0.01	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	< 0.01	< 0.01	30.38	16.62	64.21	12	16	5.2
Dump B	WDB02	< 0.01	< 0.01	< 0.01	30.94	16.54	23.05	4.8	6.6	6.2
Febfruary										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	25.37	10.25	NR	5.6	10.23	6.8
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	< 0.01	< 0.01	23.72	9.81	NR	10.13	13.24	5.8
Dump B	WDB02	< 0.01	< 0.01	< 0.01	23.44	9.92	NR	5.6	6.0	6.8
March										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	7.57	6.48	36.63	5.8	9.42	6.6
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	< 0.01	< 0.01	29.28	16.48	72.03	10.13	12.34	5.8
Dump B	WDB02	< 0.01	< 0.01	< 0.01	29.43	16.38	69.97	6.23	6.48	6.4
April										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	18.87	14.33	144.05	11.4	15.8	6.2
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	< 0.01	< 0.01	63.37	36.61	141.58	11.2	18.0	6.1

Stand M/1408, Fern Avenue, Private Bag KCM © 2000, Chingola, Zambia Tel: +260 212 350 604, Fax: +260 212 351 225 Incorporated in the Republic of Zambia, Reg.120000010056

Dump B	WDB02	< 0.01	< 0.01	< 0.01	18.87	14.33	137.05	8.3	12.0	6.3
May										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	64.97	35.16	153.52	8.8	14.8	6.6
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	< 0.01	< 0.01	71.17	37.85	181.09	48.2	89.9	2.5
Dump B	WDB02	< 0.01	< 0.01	< 0.01	72.68	37.26	79.02	8.3	15.4	6.4
June										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	91.03	65.90	NR	8.0	1307	6.6
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	< 0.01	< 0.01	65.87	42.48	NR	44.3	63.0	4.8
Dump B	WDB02	< 0.01	< 0.01	< 0.01	63.31	40.06	NR	7.5	15.4	6.4
Statutory Limit		ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 18: Cont.

MONTH		NO ₄	NO ₃	NH4	PO ₄	Cl	Ur	Temp	Turb	Color
January										
Waste Rock	WDA01	< 0.01	0.12	< 0.01	< 0.01	12.63	< 0.01	23.0	2.34	0.61
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	0.23	< 0.01	< 0.01	12.07	< 0.01	22.9	2.28	0.41
Dump B	WDB02	< 0.01	0.15	< 0.01	< 0.01	13.24	< 0.01	23.0	3.27	0.54
February										
Waste Rock	WDA01	< 0.01	0.09	< 0.01	< 0.01	13.06	< 0.01	20.40	758	0.43
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	0.21	< 0.01	< 0.01	11.36	< 0.01	20.4	17.1	0.17
Dump B	WDB02	< 0.01	0.19	< 0.01	< 0.01	11.23	< 0.01	20.5	16.4	0.36
March										
Waste Rock	WDA01	< 0.01	0.05	< 0.01	< 0.01	14.02	< 0.01	20.2	4.38	0.26
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	0.33	< 0.01	< 0.01	11.21	< 0.01	20.2	3.94	0.13
Dump B	WDB02	< 0.01	0.35	< 0.01	< 0.01	12.21	< 0.01	20.3	3.42	0.32
April										
Waste Rock	WDA01	< 0.01	0.13	< 0.01	0.04	21.4	< 0.01	24.1	0.89	0.38
Dump A	WDA02	NR	NR	NR	NR	NR	< 0.01	24.2	NR	NR
Waste Rock	WDB01	< 0.01	0.23	< 0.01	0.05	24.48	< 0.01	23.0	2.21	0.24
Dump B	WDB02	< 0.01	0.14	< 0.01	0.01	17.31	< 0.01	23.0	1.17	0.2
May										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	< 0.01	3.89	< 0.01	23.4	1.03	0.74
Dump A	WDA02	NR	NR	NR	NR	NR	NR	NR	NR	NR
Waste Rock	WDB01	< 0.01	0.03	< 0.01	< 0.01	6.88	< 0.01	23.6	2.52	1.09
Dump B	WDB02	< 0.01	0.02	< 0.01	< 0.01	6.86	< 0.01	23.4	3.32	0.89
June										
Waste Rock	WDA01	< 0.01	< 0.01	< 0.01	< 0.01	3.63	< 0.01	18.5	3.02	0.71
Dump A	WDA02	NR	NR	NR	NR	NR	NR	17.7	NR	NR
Waste Rock	WDB01	< 0.01	0.04	< 0.01	< 0.01	6.21	< 0.01	NR	3.02	1.01
Dump B	WDB02	< 0.01	0.02	< 0.01	< 0.01	7.36	< 0.01	18.0	1.19	0.68
Statutory Limit		ND	ND	ND	ND	ND	ND	ND	ND	ND

Stand M/1408, Fern Avenue, Private Bag KCM © 2000, Chingola, Zambia Tel: +260 212 350 604, Fax: +260 212 351 225 Incorporated in the Republic of Zambia, Reg.120000010056

- ND mean not defined.
- d) Access Restrictions to the Dumps

In order to prevent illegal entry by unauthorized persons, appropriate warning signage is displayed at various points around the dumps. Table 16 below details the quantities of waste rock generated and disposed at licensed Dumps A and B.

Fig.38: Waste Rock Dump A

Fig.39: Waste Rock Dump B

5.3.2 Quantities Disposed and Reclaimed

Both A and B Dumps continue to be reclaimed for production of aggregate for construction. Currently A is being reclaimed by Crushteck and Sensele while B is not being reclaimed.

	Du	mp A	Dump B					
Month	Dumped	Reclaimed by Crushtek Ltd	Dumped	Reclaimed by Zambia National Service (ZNS)	ALTRA WORKS			
January	10,261	14,120	0	0	0			
February	5,841	17,272	0	0	0			
March	4,924	18,800	0	0	0			
April	1,490	14,040	0	6,625	0			
May	0	2,880	0	14,225	0			
June	0	22,704	0	12,600	5,430			
TOTAL	22,516	89,816	0	33,450	5,430			

Table 19: Waste rock

- Unit of measure is tons.
- At 1 & 4 Shafts, all waste rock generated from the mining is taken to Waste Rock Dump A.
- At 3 Shaft, waste rock from Konkola Extension & Konkola Flats Mining Blocks is used for backfilling in the Post Pillar Cut and Fill method of mining.
- **33450 tons** of waste rock was reclaimed by ZNS for surfacing a truck park yard and drive ways at Kasumbalesa Border Post
- **89816 tons** of was rock was reclaimed by Crushteck for aggregates.
- **5430 tons** were claimed by Ultra-Works Ltd to construct a causeway for the diamond drilling works that Kobold Metals is doing around the Lubengele Tailings Dam.

PART 6: The Environmental Management (Licensing) Regulations, 2013

6. OZONE DEPLETING SUBSTANCES LICENCE

At Konkola Mine, ozone depleting substances are used in refrigeration and air conditioning equipment in office buildings, vehicles and at the hospital mortuary.

6.1 HANDLING AND STORAGE OF OZONE DEPLETING SUBSTANCES

Whenever an ODS using unit is being decommissioned or serviced, refrigerants are recovered. During the recovery process, refrigerants are transferred into a cylinder that is empty or that contains the same type of refrigerant. This is always carried out in ways that ensure ODS do not leak into the atmosphere. Only competent personnel are responsible for handling, storage, transportation and disposal of contaminated refrigerants. Tools are available to identify potential leakage points of refrigeration and air conditioning equipment. Hazard and safe working practices for installation, commissioning and handling of refrigerants are also in place. Table 25 below provides a summary of the status and usage of ODS at Konkola Mine.

Month/2024	Ozone		Ozone	CFC	
	depleting	Quantity	Depleting	Equivalent for	Sources of emission/area of usage
	substance		Potential**	the quarter	
	R-12	Nil	1.00	0	Air Conditioners and Refrigeration
	R-22	5kg	0.05	0	Air Conditioners and Refrigeration
	R-134a	Nil	0	0	Air Conditioners and Refrigeration
Ionuonu	R404	Nil	0	0	Air Conditioners and Refrigeration
January	R410	2kg	0	0	Air Conditioners and Refrigeration
	R-407c	Nil	0	0	Air Conditioners and Refrigeration
	R-12	Nil	1.00	0	Air Conditioners and Refrigeration
	R-22	4kg	0.05	0	Air Conditioners and Refrigeration
Fohrmory	R-134a	Nil	0	0	Air Conditioners and Refrigeration
reditialy	R404	Nil	0	0	Air Conditioners and Refrigeration
	R410	бkg	0	0	Air Conditioners and Refrigeration
	R-407c	Nil	0	0	Air Conditioners and Refrigeration

 Table 20: Ozone depleting substances

	D 10	NT'1	1.00	0	
	R-12	N1l	1.00	0	Air Conditioners and Refrigeration
	R-22	4kg	0.05	0	Air Conditioners and Refrigeration
Marah	R-134a	Nil	0	0	Air Conditioners and Refrigeration
Iviaicii	R404	Nil	0	0	Air Conditioners and Refrigeration
	R410	2kg	0	0	Air Conditioners and Refrigeration
	R-407c	Nil	0	0	Air Conditioners and Refrigeration
	R-12	Nil	1.00	0	Air Conditioners and Refrigeration
	R-22	8kg	0.05	0	Air Conditioners and Refrigeration
April	R-134a	1kg	0	0	Air Conditioners and Refrigeration
Артт	R404	Nil	0	0	Air Conditioners and Refrigeration
	R410	Nil	0	0	Air Conditioners and Refrigeration
-	R-407c	Nil	0	0	Air Conditioners and Refrigeration
	R-12	Nil	1.00	0	Air Conditioners and Refrigeration
	R-22	9kg	0.05	0	Air Conditioners and Refrigeration
Mov	R-134a	3kg	0	0	Air Conditioners and Refrigeration
Iviay	R404	Nil	0	0	Air Conditioners and Refrigeration
	R410	5kg	0	0	Air Conditioners and Refrigeration
	R-407c	Nil	0	0	Air Conditioners and Refrigeration
	R-12	Nil	1.00	0	Air Conditioners and Refrigeration
	R-22	3kg	0.05	0	Air Conditioners and Refrigeration
Juno	R-134a	2kg	0	0	Air Conditioners and Refrigeration
June	R404	Nil	0	0	Air Conditioners and Refrigeration
-	R410	Nil	0	0	Air Conditioners and Refrigeration
	R-407c	Nil	0	0	Air Conditioners and Refrigeration
Total		54kg			

• Unit of measure is in kg.

MC

Katongo Kabwe
ENVIRONMENTAL COORDINATOR

N PLC Itamba Joseph

SHE MANAGER

Cc File